
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department



Today’s Lecture

 Instruction Scheduling

© 2024 Arthur Hoskey. All 
rights reserved.



Compiler Phases: Front and Back 
Ends

 The front-end phases are:
◦ Scanning

◦ Parsing

◦ Semantic analysis

 The back-end phases are:
◦ Register Allocation

◦ Instruction Scheduling

◦ Code generation

© 2023 Arthur Hoskey. All 
rights reserved.



Instruction Scheduling

 Instruction Scheduling – Choose the order of instructions 
that will minimize the time it takes for the program to run.

© 2024 Arthur Hoskey. All 
rights reserved.



Latency

 Latency – How long it takes before result becomes 
available.

 We will measure latency in clock cycles.

 Assume the following latencies for operations (assumes a 
cache hit when loading):

 If a cache miss occurs during a load, then the number of 
cycles required for the load will be in the hundreds.

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

This load time assumes that it 

found the variable in the cache



Program Duration

 Estimate the cycles to run the following program for x*y.

 Cycles start counting from 1.

load x, r1

load y, r2

mult r1, r2, r3

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Cycle
Start

Cycle
End

Instruction

???



Program Duration (no pipelining)

 Count the cycles to run program x*y.

© 2024 Arthur Hoskey. All 
rights reserved.

Cycle
Start

Cycle
End

Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

8

Start is the cycle the 

instruction starts in and end 

is the cycle that it completes



Program Duration

 Estimate the cycles to run the following program for 
x*y+z:

load x, r1

load y, r2

mult r1, r2, r3

load z, r4

add r3, r4, r5

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2



Program Duration (no pipelining)

 Count the cycles to run program x*y+z.

© 2024 Arthur Hoskey. All 
rights reserved.

Cycle
Start

Cycle
End

Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

9 11 load z, r4

12 12 add r3, r4, r5

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

12



Program Duration

 Estimate the cycles to run the following program for 
w=x*y+z:

load x, r1

load y, r2

mult r1, r2, r3

load z, r4

add r3, r4, r5

store r5, w

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2



Program Duration (no pipelining)

 Count the cycles to run program w=x*y+z.

© 2024 Arthur Hoskey. All 
rights reserved.

Cycle
Start

Cycle
End

Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

9 11 load z, r4

12 12 add r3, r4, r5

13 15 store r5, w

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

15



Pipelining

Pipelining

 Current processors allow you the option to execute 
instructions in parallel.

 You can start a new instruction during each cycle.

 You are allowed to start another instruction even if there 
are instructions that have not completed yet.

 The new instruction must be independent of any 
instructions that are currently in the pipeline (the new 
instruction cannot depend on results from other 
instructions currently in the pipeline).

 Pipelining allows you to execute some instructions in 
parallel.

© 2024 Arthur Hoskey. All 
rights reserved.



Pipelining Example

Pipelining Example.

 load r1,a starts at clock cycle 1.

 load r2,b starts at the next clock cycle even though the 
first load instruction has not finished yet.

 add r1,r2,r3 must wait for the other two loads to finish 
because it needs the data from them.

© 2024 Arthur Hoskey. All 
rights reserved.

Inst\Cycle 1 2 3 4 5

load r1,a running running running

load r2,b running running running

add r1,r2,r3 running

Add instruction must wait 

for loads to finish because 

it needs their data

load r2,b does not wait for 

load r1,a to finish (starts 

immediately)



Program Duration (pipelining)

 Estimate the cycles to run the following program for x*y 
with pipelining:

load x, r1

load y, r2

mult r1, r2, r3

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2



Program Duration (pipelining)

 Count the cycles to run program x*y with pipelining.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

6

Start load y,r2 even though the 

previous load has not finished

mult must wait until both loads 

are finished



Pipelining vs No Pipelining

 Count the cycles to run program x*y.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles (pipelining)

6

Start End Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

Pipelining No Pipelining

Total Cycles (no pipelining)

8



Program Duration (pipelining)

 Estimate the cycles to run the following program for x*y+z 
with pipelining:

load x, r1

load y, r2

mult r1, r2, r3

load z, r4

add r3, r4, r5

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2



Program Duration (pipelining)

 Count the cycles to run program x*y+z with pipelining.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

6 8 load z, r4

9 9 add r3, r4, r5

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

9

Start load y,r2 even though the 

previous load has not finished

mult must wait until both loads 

are finished

Start load z,r4 even though the 

mult load has not finished

add must wait for load z,r4 to 

finish



Pipelining vs No Pipelining

 Count the cycles to run program x*y+z.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

6 8 load z, r4

9 9 add r3, r4, r5

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles (pipelining)

9

Start End Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

9 11 load z, r4

12 12 add r3, r4, r5

Pipelining No Pipelining

Total Cycles (no pipelining)

12



Program Duration (pipelining)

 Estimate the cycles to run the following program for 
w=x*y+z with pipelining:

load x, r1

load y, r2

mult r1, r2, r3

load z, r4

add r3, r4, r5

store r5, w

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2



Program Duration (pipelining)

 Count the cycles to run program w=x*y+z with pipelining.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

6 8 load z, r4

9 9 add r3, r4, r5

10 12 store r5, w

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

12

Start load y,r2 even though the 

previous load has not finished

mult must wait until both loads 

are finished

Start load z,r4 even though the 

mult load has not finished

add must wait for load z,r4 to 

finish



Pipelining vs No Pipelining

 Count the cycles to run program w=x*y+z.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

6 8 load z, r4

9 9 add r3, r4, r5

10 12 store r5, w

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles (pipelining)

12

Start End Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

9 11 load z, r4

12 12 add r3, r4, r5

13 15 store r5, w

Pipelining No Pipelining

Total Cycles (no pipelining)

15



Instruction Scheduling

 Pipelining helped decrease the number of cycles, but we 
can still do better.

 If the instructions are reordered it is possible to further 
reduce the number of cycles required to run the program.

 Instructions that are independent of other instructions can 
be moved.

 An independent instruction can be run while another 
instruction is waiting for data that it needs.

 The idea is to increase the instruction-level parallelism.

 The instruction scheduler is responsible for this reordering.

© 2024 Arthur Hoskey. All 
rights reserved.



Program Duration (pipelining and 
instruction scheduling)

 Estimate the cycles to run the following program for x*y+z 
with pipelining and instruction scheduling (reorder 
instructions to minimize the time).

load x, r1

load y, r2

mult r1, r2, r3

load z, r4

add r3, r4, r5

© 2024 Arthur Hoskey. All 
rights reserved.

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2



Program Duration (pipelining and 
instruction scheduling)

 Count the cycles to run program x*y+z.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

3 5 load z, r4

6 7 mult r1, r2, r3

8 8 add r3, r4, r5

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Total Cycles

8

Move load z,r4 before the mult (this load 

is independent).

All three loads are being done in parallel

(instruction-level parallelism).

mult is waiting for x and y to be loaded. 

The load of z can take place during this 

downtime. This "hides" the latency of the 

x and y loads.



Pipelining and Instr. Scheduling

 Count the cycles to run program x*y+z.

© 2024 Arthur Hoskey. All 
rights reserved.

Start End Instruction

1 3 load x, r1

2 4 load y, r2

5 6 mult r1, r2, r3

6 8 load z, r4

9 9 add r3, r4, r5

Instruction Latency (in cycles)

load 3

store 3

add 1

mult 2

Start End Instruction

1 3 load x, r1

2 4 load y, r2

3 5 load z, r4

6 7 mult r1, r2, r3

8 8 add r3, r4, r5

Pipelining

Pipelining and 

Instr. Scheduling

Total Cycles

8

Start End Instruction

1 3 load x, r1

4 6 load y, r2

7 8 mult r1, r2, r3

9 11 load z, r4

12 12 add r3, r4, r5

No Speedups

Total Cycles

9

Total Cycles

12



End of Slides

 End of Slides

© 2024 Arthur Hoskey. All 
rights reserved.


	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Compiler Phases: Front and Back Ends
	Slide 4: Instruction Scheduling
	Slide 5: Latency
	Slide 6: Program Duration
	Slide 7: Program Duration (no pipelining)
	Slide 8: Program Duration
	Slide 9: Program Duration (no pipelining)
	Slide 10: Program Duration
	Slide 11: Program Duration (no pipelining)
	Slide 12: Pipelining
	Slide 13: Pipelining Example
	Slide 14: Program Duration (pipelining)
	Slide 15: Program Duration (pipelining)
	Slide 16: Pipelining vs No Pipelining
	Slide 17: Program Duration (pipelining)
	Slide 18: Program Duration (pipelining)
	Slide 19: Pipelining vs No Pipelining
	Slide 20: Program Duration (pipelining)
	Slide 21: Program Duration (pipelining)
	Slide 22: Pipelining vs No Pipelining
	Slide 23: Instruction Scheduling
	Slide 24: Program Duration (pipelining and instruction scheduling)
	Slide 25: Program Duration (pipelining and instruction scheduling)
	Slide 26: Pipelining and Instr. Scheduling
	Slide 27: End of Slides

